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Abstract

Long term depression (LTD) plays an important role in the refinement of
neocortical maps during early postnatal development. Synapse formation and re-
finement in the cortex during development rely on synaptic plasticity, the cellular
mechanisms of which are poorly understood. The aim of this thesis was to inves-
tigate timing- and pattern-dependent LTD at excitatory synapses in the mouse
barrel cortex during development.

This thesis first describes the developmental profile and N-methyl-D-aspartate
(NMDA) receptor GluN2 subtype-dependence of timing-dependent plasticity at
layer 4–to–layer 2/3 synapses. A developmental dissociation of timing-dependent
plasticity was observed where timing-dependent LTD (t-LTD) was found during
early development (postnatal day, P6-8) but disappeared after P25. In contrast,
timing-dependent LTP (t-LTP) only appeared in the second postnatal week of de-
velopment (P11-15) and persisted in the adult cortex. This bidirectional plasticity
also showed a GluN2 subtype-dependent dissociation. Whereas t-LTP was depen-
dent on GluN2A subunit-containing NMDA receptors, t-LTD was dependent on
GluN2C/D subunit-containing NMDA receptors.

This thesis also reports a novel anti-Hebbian form of NMDA receptor-dependent
plasticity, in which presynaptic layer 4 neurons drive their presynaptic long-term
self-depression without the involvement of postsynaptic action potentials or cal-
cium. This mechanism suggests that, during development, presynaptic self-depression
occurs when specific spike patterns (presynaptic burst-spike) in the presynaptic
neuron are unsuccessful in driving postsynaptic activity.

Finally, this thesis addresses how t-LTD induction rules differ in vertical in-
tracolumnar layer 4–to–layer 2/3 and horizontal cross-columnar layer 2/3–to–layer
2/3 synapses in the barrel cortex. Distinct GluN2 subunit expression in vertical
and horizontal synapses regulated the time-window of t-LTD induction. It is also
shown that different excitatory intra- and cross-columnar synapses onto the same
postsynaptic layer 2/3 neurons can have different molecular requirements for the
induction of t-LTD, and that they also interact to induce heterosynaptic associa-
tive LTD. These findings may have important implications for understanding the
cellular mechanisms of experience-dependent plasticity and its relevance to the
computational principles of cortical circuit operation.
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